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Abstract. A model is developed to describe energetic materials with phase transformations from
solid to liquid to gas with an exothermic chemical reaction. The model uses a phase variable and
a reaction progress variable as thermodynamically independent state variables. A configurational
force balance is used to derive an evolution law for the phase variable. The evolution equation for
the reaction progress variable is posed as a basic law. In various limits the material is a classical
elastic solid, a Newtonian viscous liquid, and a compressible gas. The model is examined in relation
to classical equilibrium thermodynamics in a quasi-static limit. The model formulation is specialized
to simple motions which are analyzed in a companion paper.
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1. Introduction. This paper presents a thermodynamically self-consistent
model that can describe a material that undergoes phase transitions from solid to
liquid to gas with an exothermic chemical reaction. The model development is quite
basic and is likely to have wider applications, but the motivation for the study is
to describe the behavior and properties of energetic materials such as those used in
pyrotechnic materials such as condensed explosives and solid propellants.
Condensed phase energetic materials (EMs) are most typically room temperature

organic solids that bind substantial chemical energy in molecular bonds. Upon initia-
tion of chemical reaction between submolecular constituents within the solid, energy
is released that is subsequently available to do work or is converted into heat. The
advantage of the condensed phase explosive is that the energy per unit volume is
approximately a thousand times higher than its premixed, gaseous counterpart.
For the purposes of illustration and to help us develop a conceptual framework,

we will consider the energetic material HMX, [CH2 −N(N02)]4, [1] (a solid explosive
compound) to be a base-line energetic material. HMX is solid at room temperature
and pressure, and when fully chemically decomposed, its gaseous products are simple
gases like water vapor, carbon dioxide, and molecular nitrogen. There are thousands
of known energetic (explosive) compounds, so our choice of HMX is both practical
(because of its wide use) and representative, in that nearly all of the modeling issues
considered here apply to similar materials. Fundamental scientific questions surround
the phenomena of ignition and release of energy in these materials (EMs) subsequent
to impact with a piston or due to a rapid shearing motion. At high impact speeds,
(typically on the order of 1000 m/sec), simple hydrodynamic models give an adequate
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description for both ignition and transition to detonation. Hydrodynamic models are
expressed in the form of the Euler equations for reactive gas dynamics [2], which
balance kinetic energy, elastic potential energy, and the chemical energy released by
the reaction. By virtue of the speed of collision and the short duration of the ignition
event, one can justify the neglect of other types of energy and their transfer. However,
at lower impact speeds (typically below 1000 m/sec) one must fully take into account
the solid nature of the material. In contrast, models for lower-speed impact must
reflect a large number of types of energy and mechanisms by which energy in the
condensed phases can be transformed, localized, and dissipated. A successful model
must be able to describe three-dimensional stress distributions, heat conduction, phase
transformations, and chemical reaction as the material changes from solid to liquid
to gas.

Thus, accounting for the change in phase and chemical reaction are essential parts
of modeling the ignition of energetic solids. In order to do this in a continuum mod-
eling framework, one must add additional thermodynamic state variables that reflect
the internal degrees of freedom that measure the extent of reaction and phase change
in the material. Necessarily, one must posit additional balance laws and provide the
required constitutive theory to complete a model formulation. One does this by using
physical considerations (that may lie in the proposed model’s subscale physics) to
pose the required additional balance laws. For example, in the case of classical com-
bustion theory (see Williams [3] for a representative discussion of the derivation of the
commonly used equations of combustion theory), the additional state variables that
correspond to the internal degrees of freedom are the mass fractions of all the indepen-
dent chemical species. The additional balance laws are literal statements of molecular
mass balance for each independent species. Other constitutive forms required to de-
scribe the evolution of the mass fraction variable are based on well-known laws of
collisional reaction (in the case of gaseous chemical reaction), Fickean diffusion, and
so on. Importantly, the added balance laws themselves have an identifiable, molecular
origin and are directly related to physically unambiguous statements of mass balance.
However, while the physics at the molecular subscale is clear, the continuum-scale
formulation embraces the added (partial) mass conservation statements as primitive,
physical laws that must be given by ansatz.

When modeling the phase changes from solid to liquid to gas it is also impor-
tant to have a physical understanding of the molecular origins of state variables and
constitutive forms that describe the phase change. On the molecular scale, a typical
EM solid like HMX is comprised of nitrated hydrocarbon molecules that reside in a
highly ordered crystal lattice. Large quantities of energy are released only if there is
a chemical reaction between smaller pieces of the molecule, juxtaposed or dislodged
by deformation, which subsequently release their chemical energy through elementary
exothermic reactions typical of those for the gas-phase chemistry. For example, the
liquid phase of HMX is known to be very reactive and short-lived compared to the
solid phase; likewise HMX vapor is extremely reactive [4], [5]. The liquid phase is
molecularly less well ordered than the solid, with larger average intermolecular dis-
tances than the solid. If correlated to the average intermolecular spacing (say), the gas
phase is less ordered than the liquid. Thus a state variable (sometimes called an order
parameter or a phase field variable) can be introduced to reflect a continuum measure
of molecular order of the condensed phases (solid crystalline and liquid phases) and
the gaseous phase. We will call the order parameter, or phase field variable, simply
the phase variable φ and assume that it is normalized in such a way so that φ = 0
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corresponds to a solid, φ = 1 a liquid, and φ = 2 a gas.

In this formulation, the precise relationship of noninteger values of a phase variable
like φ to the molecular subscale structure of the material is somewhat ambiguous in
contrast to the unambiguous meaning of reactant mass fractions in combustion theory.
In a more advanced theory it is anticipated that φ will be assigned to specific molecular
coordinates. Advances in molecular dynamics of condensed phase systems do promise
to eventually provide a more substantial basis for physical assignment of the phase
variables, possibly based on the average molecular spacing (say) or other molecularly
based kinematic variables [6], [7].

Despite possible ambiguity in its precise physical interpretation, if a phase vari-
able is to be used in a model to represent an independent degree of freedom, it should
be constrained by standard principles found in the theory of continuum mechanics.
In the regions where the phase is pure (i.e., φ = 0, 1, or 2) the material properties
and the constitutive relations must describe the pure material with the properties of
that phase. We require that the formulation has a sense in which it is thermody-
namically and tensorially consistent. This allows further developments in a rational
and systematic manner in three dimensions. We consider a simplified model of an
EM (HMX, say) which we suppose has three relevant phases: a solid phase, a liquid
phase, and a gas phase. We assume that the path from solid to gas goes through the
successive phase transformations, solid → liquid → gas. Phase boundaries are to be
represented by (typically thin) regions across which the value of the phase variable
changes from one constant to another. Also, we will use a single (lumped chemistry)
progress variable λ, to describe the extent of exothermic chemical reaction λ with
value λ = 0 when no reaction has occurred and λ = 1 when the reaction is completed.
The model allows chemical reactions in any phase.

A key aspect of the model is explicit partitioning of the energy associated with
specific internal (thermal) energy, chemical reaction energy, elastic potential (defor-
mational) energy, and energies associated with phase change, such as the enthalpies as-
sociated with melting of the solid and evaporation of the liquid, and potential energies
stored at phase boundaries. The partitioning of the energy is represented by a decom-
position of the Helmholtz free energy ψ into the various parts associated with the en-
ergies listed above, such that ψ = ψthermal+ψelastic+ψreaction+ψphase+ψgrad(phase).
The constitutive forms used for ψthermal and ψelastic are found in discussions of
thermo-elastic materials. The constitutive forms for ψphase and ψgrad(phase) contain
the energies of phase change and energies stored near phase change interfaces. The
constitutive form for ψreaction can be found in a discussion of premixed combustible
materials. The free energies and other constitutive variables are allowed to depend on
both the phase variable φ and the reaction progress variable λ as well as the temper-
ature T and the deformation gradient F and the gradient of φ, ∇φ. The governing
equations are formulated by statements of conservation of mass, momentum, energy,
evolution equations for the change in phase, and the progress of the chemical reaction.

The treatment we use to describe the evolution of the phase variable follows
classical treatments that arose in the discussion of solidification (for example, see
[8]) but specifically follows a consistent formulation pioneered by Gurtin [9]. Gurtin
has argued for a separate continuum balance of configurational forces acting near
the boundaries separating pure phases in the volumetric bulk. The arguments for
including these additional forces may be justified by consideration of short-range
van der Waals forces that typically are generated near phase boundaries due to local
changes in the intermolecular distances. The arguments for such configurational forces
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are similar to those used to explain classical surface tension forces. The hypothesis is
that if the configurational forces act in the vicinity of the boundary near the change
in phase and in the bulk, they can be in balance, and if so, they must not effect the
overall (conventional) momentum balances. Hence the force balance is posited as a
basic law. However, with the postulate of a balance of configurational forces comes the
consequence that those forces do work. The working rate is accounted for explicitly
in the overall energy balance.

The second law of thermodynamics (the Clausius–Duhem inequality) restricts the
form of the constitutive theory so that the rate processes are dissipative and entropy is
increasing. An important outcome of these arguments is the derivation of an evolution
equation for the phase variable φ that is essentially a Ginzburg–Landau equation
with additional forcing terms. The evolution equation for φ is a time-dependent,
reaction-diffusion equation which is amply capable of describing the pattern formation
associated with phase transformation. The richness of the resulting theory becomes
evident in the energy equation. Due to the decomposition of the Helmholtz free
energy, the energy equation contains contributions from all the different terms in
the partition and reflects the fact that in the energetic material, energy is converted
and distributed to many different forms such as elastic, kinetic, internal, and phase
gradient energy (stored in interfaces).

In the sections that follow, the development of the model is given, based on
the continuum-thermodynamic formulation described above. In section 2 we review
the continuum-thermodynamic formulation consistent with conventional combustion
theory [3], [10], [11], [12] that specifically includes a reaction progress variable. A
(nonstandard) presentation of the Helmholtz energy decomposition is given and the
attendant standard arguments for restrictions placed by the second law are given. In
section 3 we present a model for a material that changes from solid to liquid to gas
and present a Helmholtz free-energy decomposition that is suitable to describe such a
material, subject to second law restrictions. In section 4, the combined model for an
EM (with both phase change and chemical reaction) is then presented. In section 5 we
discuss various limiting cases of the model. We discuss the relationship of the model
to classical quasi-static thermodynamics and illustrate examples based on fits to HMX
properties to illustrate the dynamics of a phase change that would be calculated in
the classical theory. Section 6 presents special formulations of the model equation
for three important simple motions. These cases are (i) constant volume evolution
(which is a generalization of the classical constant volume explosion formulation found
in combustion theory), (ii) one-dimensional, time-dependent longitudinal compression
(expansion), and (iii) one-dimensional, time-dependent shear motion. The solution of
the equations for these three important cases for an HMX-like material is the subject
of the companion paper [13].

In what follows, a “c” subscript denotes a condensed phase, either solid or liquid,
an “f” subscript denotes fluid, either liquid or gas, an “s” subscript denotes solid,
an “l” subscript denotes liquid, and a “g” subscript denotes gas. The spelled out
subscripts “solid,” “liquid,” and “gas” refer to constant values for that pure phase.
The notation is kept as simple as possible in an attempt make the paper easier to
read. Bold face quantities can either be vectors or tensors. If obvious, the constant
arguments during differentiation are dropped. Our notation is standard, insofar as is
possible and follows a well-known text like Bowen [12].

1.1. Kinematics. Let the Eulerian (spatial) coordinates of position in the lab-
frame be given by x and the Lagrangian (material) coordinates (or particle coordi-
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nates) be given by X. For simplicity we will assume that X represent the initial
position of material particles. Then the mapping of the deformations that define the
particle trajectory paths is given by

x = x(X, t) .(1.1)

The deformation gradient F is defined by the derivative

F =
∂x

∂X
,(1.2)

and the velocity of particles v is defined by the time derivative of the particle tra-
jectories v = (∂x/∂t)X . The velocity gradient is L = ∇v. Let the dot notation,
˙
(), refer to the material derivative. A standard identity that can be verified by the
previous definitions and the chain rule gives the material (particle-fixed) time deriva-
tive of the deformation gradient as Ḟ = LF . A statement of conservation of mass
in the material frame is that the ratio of the instantaneous density, ρ, of the particle
to a reference (ambient) density of the solid, ρ0, is equal to the determinant of the
deformation gradient

det(F ) =
ρ0
ρ
.(1.3)

2. Review of the thermomechanics for a simple model of a reactive
flow. The standard combustion model, for a premixed mixture that can explode
or burn, can be derived from a simple mixture theory; see references [3], [10], [11],
[12]. The combined model that we introduce later incorporates the features of the
standard combustion model, so we review its derivation. Importantly, the reaction
progress variable λ represents a product mass flux. Hence λ is treated differently from
the phase variable φ, which is introduced later to describe the change in phase from
solid to liquid to gas.
For the purpose of discussion, one assumes that there are only two distinct species,

fuel and product (say). The corresponding chemical reaction is written as F →
P + Qhc (heat). All physical properties of the two species such as the molecular
weights, specific heats, conductivities, etc. are assumed to be identical, save the heats
of formation, the weighted difference of which is the heat of combustion.
We start with the balance laws for conservation of mass, linear momentum (with-

out body forces), and energy:

ρ̇ + ρ (∇ · v) = 0 ,(2.1)

ρ v̇ = ∇ · σ + ρf ,(2.2)

ρė = σ : ∇v − ∇ · q + ρ r .(2.3)

In the energy equation, r is a volumetric energy production term that typically rep-
resents radiation or volumetric heating (or cooling) in combustion theory. The body
force is given by f . In addition, we invoke a primitive evolution law for the reaction
progress variable λ:

ρλ̇ = ∇ · s+ ρΩ .(2.4)

The vector s is the flux of mass of reacted species per unit area per unit time and ρΩ
is the instantaneous rate of creation of mass of the reacted species per unit volume.
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Then λ is recognized as the mass fraction of the product species. Further, by direct
correspondence with the standard combustion equations, one can interpret s = ρλV ,
where V is the diffusion velocity of the product species (say), and where ρλ is the
partial density fraction of the same product.
To these basic laws we add the second law of thermodynamics, the Clausius–

Duhem inequality

ρ η̇ ≥ −∇ ·
( q
T

)
+ ∇ ·

(
Qhcs

T

)
+
ρr

T
,(2.5)

where Qhc, the heat of combustion, is the exothermic energy release per unit mass
and the term ∇· (Qhc s/T ) represents the gradient of the entropy flux associated with
the chemical reaction.

2.1. Constitutive forms and restrictions. Next consider the classical forms
and assumptions that lead to the combustion equations of premixed materials found
in texts like [3] or [10]. The formulation uses the Helmholtz free energy, which is
defined in terms of the internal energy and entropy as ψ = e− Tη. We start with the
assumption that ψ is specified by

ψ = ψ(F , T, λ),(2.6)

and we assume similar dependencies for e, η, and all other thermodynamic variables.
Next we consider the implication of the entropy inequality and deduce various restric-
tion imposed by it on the constitutive formulation.
If we use the definition of the Helmholtz free energy to get an expression for

the entropy, as η = (e − ψ)/T , and take the material derivative, we obtain η̇ =
(ė− ψ̇ − ηṪ )/T . In particular the derivative ψ̇ appears and, using the form assumed
above, it is calculated as

ψ̇ =
∂ψ

∂F
F T : ∇v +

∂ψ

∂T
Ṫ +

∂ψ

∂λ
λ̇ .(2.7)

Using this expression for ψ̇ and using the energy equation to replace ė in the entropy
inequality leads to an intermediate result:

(
σ − ρ ∂ψ

∂F
F T

)
: ∇v − ρ

(
η +

∂ψ

∂T

)
Ṫ − (q −Qhcs) ·

∇T
T

− ρ∂ψ
∂λ
λ̇−Qhc

∇ · s ≥ 0 .
(2.8)

We restrict our choice in constitutive theory to forms that will automatically satisfy
this dissipation inequality as the physical processes in the material range over all ad-
missible deformations and temperature fields. For example, since ∇v can be regarded
as an independent field, then in the standard way we restrict the form of the stress
tensor such that

σ = ρ
∂ψ

∂F
F T + σdiss ,(2.9)

where the dissipative stress σdiss satisfies σdiss : ∇v ≥ 0. This last requirement is
clearly satisfied by the classical choice for a viscous fluid,

σdiss = νg(∇ · v)I + 2µgD ,(2.10)
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where D = (∇v+ ∇vT )/2 and νg, µg are positive and are identified as the gas-phase
bulk and shear viscosities. The assumed form of the stress becomes

σ = ρ
∂ψ

∂F
F T + νg(∇ · v)I + 2µgD .(2.11)

In a similar fashion, since Ṫ is independent, we require that the Helmholtz free
energy must satisfy Gibbs’ relation

∂ψ

∂T
= −η .(2.12)

The entropy inequality is now satisfied if the following reduced inequality is satisfied:

−(q −Qhcs) ·
∇T
T

− ρ∂ψ
∂λ
λ̇−Qhc

∇ · s ≥ 0 .(2.13)

If we assume that the change in the Helmholtz free energy with respect to the progress
variable is related to the heat of combustion (which also can be verified and put into
direct correspondence with forms derived in mixture theory of reacting gases; see [10],
[11], [12]),

∂ψ

∂λ
= −Qhc ,(2.14)

and we use the evolution equation for the progress variable ρλ̇− ∇ · s = ρΩ, then the
reduced inequality can be recast as

−(q −Qhcs) ·
∇T
T
+ ρQhcΩ ≥ 0 .(2.15)

Finally we make the choice that the energy flux vector is the sum of a Fourier heat
conductive flux and an energy flux associated with the diffusion of the product species,

q = −k∇T +Qhc s ,(2.16)

and we require that for an exothermic chemical reaction with Qhc > 0, the reaction
rate must be positive with Ω ≥ 0. With these restrictions the second law is auto-
matically satisfied. Recall that s represented the mass flux vector of the product
species, s = ρλV , where V is the diffusion velocity of that species. Without further
restriction we can make a standard assumption that the diffusion velocity is related
to the gradient of the species concentration through a Fick’s law relation,

s = ρλV = d ∇λ ,(2.17)

where d ≥ 0 is a diffusion coefficient.
2.2. Temperature form of the energy equation. We present the temper-

ature form of the energy equation in terms of a specification of the Helmholtz free
energy, in order to set the stage for later discussions. We use the definition of the
specific internal energy in terms of the temperature and the entropy, e = ψ + Tη, to
obtain ė = ψ̇ + ηṪ + T η̇. Next we use the form of the Helmholtz energy ψ(F , T, λ)
and Gibbs’ relation η = −∂ψ/∂T to generate expressions for ψ̇ and η̇ as

ė =
∂ψ

∂F
F T : ∇v +

∂ψ

∂T
Ṫ , η̇ = − ∂2ψ

∂T∂F
F T : ∇v − ∂2ψ

∂T 2
Ṫ .(2.18)
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We then insert these expression into (2.3) and make some further simplifications. A
collection of terms appears that is associated with the stress-related dissipation(

σ − ρ ∂ψ
∂F

F T

)
: ∇v = σdiss : ∇v .

Using the classical definition of the specific heat at constant deformation (volume),

cv ≡ T ∂η
∂T

∣∣∣∣
F

= −T
(
∂2ψ

∂T 2

) ∣∣∣∣
F

,(2.19)

the energy equation can be rewritten as follows:

ρcvṪ = −∇ · q + σdiss : ∇v + ρT
∂2ψ

∂T∂F
F T : ∇v .(2.20)

The term ρT (∂2ψ/∂T∂F )F T : ∇v is a stress work term classically associated with
thermal stresses. As we will see below in the case of gaseous combustion for ideal
gases, this term is proportional to the pressure work term −p (∇·v), where p = ρRgT
and Rg is the ideal gas constant.

2.2.1. The form of the Helmholtz free energy from classical combustion
theory. To complete the classical formulation for premixed combustion, one must
specify the form of the Helmholtz free energy. The forms can be extracted from the
correct forms found in the binary mixture theory of premixed gases; see [12], [3], [10],
[11]. Let B = FF T be the left Cauchy–Green tensor and let IIIB = (ρ0/ρ)

2 be the
third invariant of B. Then the form of the Helmholtz free energy for a thermally ideal
material, with the additional term required for the change in enthalpy associated with
combustion, is comprised of three parts: a thermal energy density ψ1 = cv[(T −T0)−
T ln(T/T0)], a strain energy density associated with the temperature (that defines the
pressure in terms of the density and temperature) ψ2 = −1/2RgT ln(IIIB), and the
chemical enthalpy ψ3 = −Qhcλ. Thus the total free energy ψ = ψ1 + ψ2 + ψ3 is

ψ = cv(T − T0)− cvT ln
(
T

T0

)
− 1
2
RgT ln(IIIB)−Qhcλ .(2.21)

It follows that the elastic part of the stress can be computed from this form of the
free energy and identifies the classical thermodynamic pressure p. In particular, we
have that ρ(∂ψ/∂F )F T = 2ρ(∂ψ/∂B)B = −ρRgTI ≡ −pI, which leads to the
identification of the pressure p by the ideal gas law, p = ρRgT . Also, the thermal

stress work term is rewritten ρ (∂ψ/∂F )F T : ∇v = −p (∇ · v). The corresponding
form of the entropy and the internal energy (obtained from the definition of the
Helmholtz free energy and Gibbs’ relation) are given by

e = cv(T − T0)−Qhcλ , η = cv ln

(
T

T0

)
+
R

2
ln(IIIB) .(2.22)

2.3. Summary of the governing equations for a premixed reactive fluid.
Here we summarize the results of the last section that reduce to the classical form of
the combustion equations for a premixed combustible fluid. These equations incorpo-
rate the various restrictions and constitutive forms that we assumed and are suitable
for solving initial value problems ordinarily associated with the theory of premixed
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combustion. The entropy (dissipation) inequality is not included in our list since it is
automatically satisfied by construction of the model. The equations for ρ,v, T , and
λ are

ρ̇ + ρ∇ · v = 0 ,(2.23)

ρ v̇ = ∇ · σ + ρf ,(2.24)

ρcvṪ = ∇ · (k∇T ) + σdiss : ∇v − p(∇ · v) + ρQhcΩ ,(2.25)

ρλ̇ = ∇ · (d ∇λ) + ρΩ ,(2.26)

with the constitutive relation for the stress given by σ = −ρRgTI+νg ∇·vI+2µgD,
with σdiss = νg ∇ · vI + 2µgD, and with D = (∇v + ∇vT )/2.

3. Thermomechanics of a model of a material with phase changes from
solid to liquid to gas. Here we develop a model for a material that can undergo
a phase change from solid to liquid to gas in preparation for the development of the
combined model, which includes chemical reaction and exothermic energy release. The
important difference in the development in this section from that in section 2 is the
introduction of a phase variable that is used to describe and delineate the separate
phases. In order to describe the phase transitions we introduce the (normalized)
variable φ so that φ = 0 corresponds to the solid phase, φ = 1 to the liquid phase,
and φ = 2 to the vapor phase. In its pure phases, solid, liquid, and gas, the material
is prescribed by classical models for that pure phase, i.e., a compressible elastic solid
and a compressible Newtonian liquid and gas.

A consistent thermodynamic formulation for the model is developed through an
extension of a formulation proposed by Gurtin [9]. Energy expended by the system
during a phase change is associated with configurational forces of two types—a config-
urational stress that acts at or near the boundaries between phases which is balanced
by a configurational force distributed in the bulk. The power expenditure of these
forces must be accounted for in the energy balance. If one assumes that the config-
urational forces in the material are balanced separately (this is a posited balance),
then the evolution of the phase field φ is constrained by the entropy inequality to
be dissipative and further considerations lead to the derivation of an evolution law
for φ. This is in contrast to the formulation of the last section, which considered
the evolution law for the progress variable λ as posited. Presumably (and we have
considered this in some detail that is not presented here), an alternative to deriving
the equation for φ is to pose an evolution equation as fundamental and then derive
the consequence of local balance for the configurational forces. Either way, one comes
to similar physical conclusions. The consequences of this choice, in absence of better,
physically based arguments, need to be judged against the forms of the equations that
result that allow us to solve interesting initial value problems.

The starting point is the form of the general laws. The differential form of the
general law for mass, (2.1), and momentum, (2.2), are unchanged from the previous
section. We turn to the more unfamiliar considerations of the force balance law
associated with the phase change and corresponding changes in the energy balance
next.

3.0.1. Force balances associated with the change in phase. Associated
with the evolution of the phase variable φ, we introduce a balance of configurational
stress ξ, a configurational internal force density πφ. The integral form of the balance
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law for a body in region B with boundary ∂B is∫
∂B

ξ ·n dA+
∫
B
(πφ) dV = 0,(3.1)

and with the use of the divergence theorem, the corresponding differential form of the
balance law is

∇ · ξ + πφ = 0 .(3.2)

3.0.2. Rate of work. The rate of work expended on B is due to the external
forces acting on the surface and within the volume of B. Gurtin [9] shows that the
correct form for the rate of work due to all stresses is

W ≡
∫
∂B

(
σn·v + ξ ·(φ̇n)) dA+ ∫

B
b·v dV.(3.3)

The integral form of the energy balance can be written in the standard way as the
material derivative of the total energy (internal and kinetic) equated to the rate of
work minus the energy flux out of the body plus the rate of heating by any other
source; thus

D

Dt

∫
B
ρ(e+ 1

2 |v|2) dV =W −
∫
∂B

q ·n dA+
∫
B
ρr dV .(3.4)

To obtain the differential form we convert the surface integrals into volume inte-
grals and use the divergence theorem. The resulting integral must hold everywhere
for all subvolumes, so the resulting integrand is set to zero, which leads to an inter-
mediate differential form (not shown). We then use the momentum equation and take
its dot product with the velocity v to get the standard work-energy statement on a
material path and subtract that result from the above-mentioned intermediate form
to get the following form of the energy equation:

ρė = −∇ · q + σ : ∇v + ξ · ∇(φ̇)− πφφ̇+ ρr .(3.5)

The main difference from the classical form is the appearance of the two work terms
ξ · ∇(φ̇) and −πφφ̇ that derive from the configurational forces. For upcoming consid-
erations of the entropy inequality, it is useful to use identities (which can be verified

easily in Cartesian index notation) to rewrite the term ξ · ∇(φ̇) as

ξ · ∇(φ̇) = ˙∇φ · ξ + ∇φ⊗ξ : L ,(3.6)

so that the revised energy equation reads as

ρė = −∇ · q + σ : ∇v +
˙∇φ · ξ + ∇φ⊗ξ : ∇v − πφφ̇+ ρr .(3.7)

3.0.3. The entropy inequality. Finally, to these basic laws we must add the
second law of thermodynamics, the Clausius–Duhem inequality

ρ η̇ ≥ −∇ ·
( q
T

)
+
ρr

T
.(3.8)

Note that since φ is not assumed to be related to a partial mass density of material,
there is no entropy flux term like ∇· (Qhc s/T ) that appears in the combustion-based
entropy inequality (2.5). Equation (3.8) is the classical (inert) form of the entropy
inequality.
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3.0.4. Constitutive forms and restrictions from the entropy inequality.
We restrict our attention to a general class of constitutive equations and start with a
very general assumption that the free energy density ψ, the Cauchy stress σ, the con-
figurational stresses ξ, and the internal configurational force πφ, the entropy density
η, and the heat flux q at any point (x, t) are dependent on the deformation gradient

F , the temperature T , the phase field φ, the gradients ∇T , ∇φ, and the velocity
gradient L, such that we can write

ψ = ψ(F , T, φ, ∇T, ∇φ,L).(3.9)

We assume that σ, ξ, πφ, η, and q all depend on the same argument list, (F , T, φ, ∇T,
∇φ,L). We use the definition of the Helmholtz free energy to get an expression for
the entropy, η = (e − ψ)/T , take the material derivative, and then use the energy
equation to replace ė and use the chain rule to replace ψ̇. These substitutions into
the entropy inequality lead to the intermediate result:(

σ − ρ ∂ψ
∂F

F T + ∇φ⊗ξ

)
: ∇v − ρ

(
η +

∂ψ

∂T

)
Ṫ −

(
πφ + ρ

∂ψ

∂φ

)
φ̇

−ρ ∂ψ

∂∇T · ˙∇T −
(
ρ
∂ψ

∂∇φ − ξ

)
· ˙∇φ− ρ

(
∂ψ

∂L

)
: L̇− q ·

∇T
T

≥ 0 .(3.10)

Again we restrict our choice of constitutive forms to those that automatically
satisfy this dissipation inequality as the physical process in the material ranges over
all admissible deformations and temperature and phase fields. We restrict the form
of the stress tensor such that

σ = ρ
∂ψ

∂F
F T − ∇φ⊗ξ + σdiss ,(3.11)

where again σdiss must be chosen to satisfy σdiss : ∇v ≥ 0. Later we will take σdiss

to be given by (2.10), where the shear and bulk viscosities are taken to be functions
of the phase field variable φ. We require that Gibbs’ relation be satisfied and that
the configurational force ξ be defined by the derivative of the Helmholtz free energy
with respect to the gradient of φ such that

η = −∂ψ
∂T

and ξ = ρ
∂ψ

∂∇φ .(3.12)

We also assume that the Helmholtz free energy is independent of L = ∇v and the
temperature gradient ∇T so that

∂ψ

∂L
= 0 and

∂ψ

∂∇T = 0(3.13)

hold. We also suppose that the energy flux vector is described by a Fourier heat
conduction law, q = −k∇T , and insist that k is a positive constant that can be a
function of the temperature and the order parameter, i.e., k(φ, T ) ≥ 0. Then the
reduced dissipation inequality now has the form

−
(
πφ + ρ

∂ψ

∂φ

)
φ̇ ≥ 0 .(3.14)
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The final form of the reduced dissipation inequality is satisfied if we require that the
phase changes be dissipative and if we allow πφ to take the form

−
(
πφ + ρ

∂ψ

∂φ

)
= Bφ̇,(3.15)

where B ≥ 0. Equation (3.15) is an evolution equation for the phase variable φ.
Note that the configurational force balance (3.2) defines πφ = −∇ · ξ and with the
configurational force identified by ξ = ρ(∂ψ/∂∇φ) leads to πφ = −∇ · (ρ∂ψ/∂∇φ).
Thus (3.15) can be re-expressed as

Bφ̇ = ∇ ·
(
ρ
∂ψ

∂∇φ

)
− ρ∂ψ

∂φ
.(3.16)

Given appropriate forms for ψ (such as quadratic dependence of ψ on ∇φ), (3.16)
is recognized as an advection, reaction-diffusion equation, which, given an assumed
form for ψ, can generate a Ginzburg–Landau equation. The coefficient B−1 is then
recognized as a kinetic rate constant for the phase transformation.

3.1. Temperature form of the energy equation. In order to show the cou-
pling between the thermal (temperature) field, the stress field, and the phase field, we
present an alternative form of the energy equation. Starting with the energy balance
(3.7) we use the definition of the specific internal energy in terms of the temperature
and the entropy, e = ψ + Tη, to obtain ė = ψ̇ + ηṪ + T η̇. Next we use the form of
the Helmholtz energy ψ(φ, T, ∇φ,F ) and Gibbs’ relation, η = −∂ψ/∂T , to generate
expressions for ψ̇ and η̇:

ψ̇ =
∂ψ

∂F
F T : ∇v +

∂ψ

∂T
Ṫ +

∂ψ

∂φ
φ̇+

∂ψ

∂∇φ · ˙∇φ ,(3.17)

η̇ = − ∂2ψ

∂T∂F
F T : ∇v − ∂2ψ

∂T 2
Ṫ − ∂2ψ

∂T∂φ
φ̇− ∂2ψ

∂T∂∇φ · ˙∇φ .(3.18)

We then insert these expressions into (3.7) and make some further simplifications. In
the resulting collection, terms proportional to Ṫ drop out because of Gibb’s relation

η = −∂ψ/∂T . Likewise, terms proportional to ˙∇φ drop out because of the relation
for the configurational stress ξ = ρ(∂ψ/∂∇φ). A collection of terms appear that is
associated with the stress-related dissipation(

σ − ρ ∂ψ
∂F

F T + ∇φ⊗ξ

)
: ∇v = σdiss : ∇v,

and a collection of terms associated with the dissipation induced by the phase trans-
formation appears,

−
(
ρ
∂ψ

∂φ
+ πφ

)
φ̇ = Bφ̇2 .

Using the classical definition of the specific heat at constant deformation (volume),
cv ≡ T (∂η/∂T )F = −T (∂2ψ/∂T 2)F , the energy equation can be rewritten as follows:

(3.19) ρcvṪ = −∇ · q + σdiss : ∇v +Bφ̇2 + ρT
∂2ψ

∂T∂F
F T : ∇v

+ ρT
∂2ψ

∂T∂φ
φ̇+ ρT

∂2ψ

∂T∂∇φ · ˙∇φ+ ρr .
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Some straightforward physical interpretations can be made for the various terms.
The term σdiss : ∇v is the viscous dissipation associated with the stress. The term
Bφ̇2 is a dissipation associated with the phase change. The term ρT (∂2ψ/∂T∂φ) φ̇
is an energy source term that is associated with enthalpic changes in phase (simi-
lar to those associated with the heat of combustion for reacting flows). The term

ρT (∂2ψ/∂T∂F )F T : ∇v is (again) a stress work term classically associated with

thermal stresses. Similarly, the term ρT (∂2ψ/∂T∂∇∂φ) · ˙∇φ is a thermal stress work
term associated with the configurational stress of the phase change.

3.1.1. Invariance requirements and isotropy. Most energetic solids are en-
countered as fine-grained polycrystalline aggregates and are often modeled with con-
ventional isotropic liquid and gaseous forms. We now restrict our attention to isotropic
materials, and we ignore possible anisotropic properties in this model. As is con-
ventional we require that the material response is invariant under superposed rigid
changes of observer. It can be shown in a standard way that the constitutive de-
pendence on the deformation gradient F can be replaced by the left Cauchy–Green
tensor B = FF T and that the dependence on the velocity gradient is replaced by the
symmetric stretching tensor D = (L + LT )/2. Furthermore, isotropy requires that
the dependence on B appears through its principal scalar invariants IB = traceB,
IIB =

1
2

(
(traceB)2 − trace(B2)

)
, and IIIB = detB.

3.1.2. Constitutive specification of the Helmholtz free energy. Having
made arguments that constrain the general form of the constitutive description, we
next specialize the forms to extend the phase field constitutive forms and to capture
commonly used classical forms for the pure solid, liquid, and gas phases. Without
regard to exothermic chemical reaction, we will assume that the Helmholtz free energy
is composed of four parts, such that we can write

ψ = ψ1 + ψ2 + ψ3 + ψ4 .(3.20)

The first two, ψ1, ψ2, are to be associated with the formulation of the phase transform-
ations—the phase gradient energy density and the enthalpies associated with the
phase transition. The latter two, ψ3, ψ4, are of classical origins—the thermal energy
density and the strain energy density.
We assume that the Helmholtz free energy depends on ∇φ only through ψ1 and

that the phase gradient energy density is specified with the explicit quadratic depen-
dence by

ψ1 =
1
2γφ|∇φ|2 .(3.21)

It follows from (3.12) that the configurational force ξ is determined by the formula

ξ = ρ
∂ψ

∂∇φ = ργφ
∇φ .(3.22)

The physical interpretation of the phase-configurational stress ξ is as a traction that
acts near or in the phase transition region in the direction of the gradient of ∇φ, i.e.,
perpendicular to contours of constant φ.
Next we consider the contribution ψ2, the phase transition energy density which

reflects enthalpy changes during phase transition and is specified as

ψ2 =
1

2
ΨwellF(φ) + βm(φ)Qm

( T
Tm

− 1
)
+ βv(φ)Qv

( T
Tv

− 1
)
.(3.23)
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Fig. 1. Plot of ψ2 as a function of φ with T variation.

The constants Ψwell > 0, Qm < 0, and Qv < 0 represent a potential well depth and
the heats of melting and vaporization. The constants Tm > 0 and Tv > 0 represent
temperatures of melting and vaporization. The triple-well potential F(φ) can be
described by a smooth positive definite function whose isolated zeros are at φ = 0, 1,
and 2, representing three local minima. In addition, F(φ) is assumed to be locally
quadratic near the zeros at φ = 0, 1, and 2, i.e., near φ = 0, F ∼ φ2, near φ = 1,
F ∼ (φ−1)2, and near φ = 2, F ∼ (φ−2)2. As an illustration, F = [φ(φ−1)(φ−2)]2
has this property. The function βm(φ) is assumed to be smooth and monotonically
increasing and has values from 0 to 1 on the range 0 ≤ φ ≤ 1 with zero derivative
elsewhere. The function βv(φ) is similarly assumed to be monotonically increasing
with values from 0 to 1 on the range 1 ≤ φ ≤ 2. Note that the derivative of transition
energy density ∂ψ2/∂φ generates source terms in both the energy and phase equations
represented as

∂ψ2

∂φ
=
1

2
Ψwell ∂F

∂φ
(φ) + β′m(φ)Qm

( T
Tm

− 1
)
+ β′v(φ)Qv

( T
Tv

− 1
)
.(3.24)

Figure 1 illustrates the assumed dependence of ψ(φ, T ) on φ and T . Starting from
(a) through (d), temperature T is raised from below Tm to above Tv, representing a
standard melting-evaporation process. The transition energy density in case (a) has
its minimum at φ = 0. As T is increased through Tm and then Tv, we see a shift in the
global minima from pure solid to solid-liquid and to liquid-vapor. As T eventually
exceeds Tv as shown in (d), the energy minimizing well shifts to a vapor state at
φ = 2. The coefficients and functions Ψwell, βm, βv can be adjusted (if needed) to
reflect more accurately the physical properties observed in accordance with the phase
transformation. Here we have chosen very simple forms.

We again assume the classical form for the thermal energy density and choose ψ3
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(which has the same form as ψ1 in section 2) to be

ψ3 = cv [(T − T0)− T ln(T/T0)] ,(3.25)

where cv is the specific heat at constant deformation. This is consistent with simple
ideal models for solids, liquids, and gases.
Finally we choose a form for ψ4, the strain energy density. We assume that it is

composed of three subparts. The first part is associated with the thermal expansion
stresses commonly identified in the condensed phase:

ψ4a = −αc(φ)K

2ρ0
(T − T0) ln(IIIB) ,(3.26)

whereK is the solid bulk modulus and αc is the linear coefficient of thermal expansion.
We again take αc(φ) to be a smooth, nonzero function in the condensed phases, solid
and liquid, and zero in the gas phase. For example, αc(0) = αsolid, αc(1) = αliquid,
and αc(2) = 0. The second part of ψ4 is associated with the pressure commonly
identified in an ideal gas that we encountered in the previous section on gaseous
combustion:

ψ4b = −1
2
Rg(φ)T ln(IIIB) .(3.27)

Here Rg(φ) plays the role of the ideal gas constant except that it is assumed to be
nonzero in the gas phase and at or near zero in the solid and liquid condensed phase
such that Rg(0) = 0, Rg(1) = 0, Rg(2) = Rgas.
The third part, ψ4c, is based on properties of a compressible neo-Hookean, Blatz–

Ko solid [15] which is given as

ψBK =
µ

2ρ0
(IB − 3) + µ(1− 2ν)

2ρ0ν

(
III

−ν/(1−2ν)
B − 1

)
.(3.28)

The constants ν and µ here represent the Poisson ratio of the material and the elastic
Lamé parameter, µ. The contribution to the stress associated with this potential is

σBK = 2ρ
∂ψBK

∂B
B = µs

ρ

ρ0
B − µ ρ

ρ0
III

−ν/(1−2ν)
B I .(3.29)

We use this to model the elastic deformation of the solid, but for the liquid we
pose a slightly altered form of this potential based on purely isotropic deformations.
Consider the isotropic (either uniform contraction or expansion) given by x = sX,
where s is the stretch ratio of material line segments. It follows simply that F = sI,
B = s2I, IIIB = det(B) = (ρ0/ρ)

2 = s6, s = (ρ0/ρ)
1/3, B = (ρ0/ρ)

1/3I, and

(ρ0/ρ)
1/3 = III

1/6
B . For the Blatz–Ko solid, the isotropic stress is related to the

volume ratio by

σ = −µ ρ
ρ0

[(
ρ

ρ0

)− 2ν
1−2ν

−
(
ρ

ρ0

)− 1
3

]
I .(3.30)

We choose our model for the strain energy of the liquid to have the same functional
form for the isotropic stress dependence on the density ratio as that for the solid, and
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merely note that we replace the dependence on ρ0/ρ by III
1/2
B and work backwards.

The corresponding Helmholtz free energy for the liquid would take the form

ψBK(liquid) =
3

2

µ

ρ0
III

1/3
B +

µ(1− 2ν)
2ρ0ν

(
III

−ν/(1−2ν)
B − 1

)
.(3.31)

We can combine the two potentials for the solid and the liquid in the following
way. Let µs(φ) be a coefficient such that µs(0) = µsolid and it is zero for φ ≥ 1. Let
µl(φ) be a smooth function such that µl(1) = µliquid with µl(0) = µl(2) = 0. One
makes similar definitions for νs and νl. Let µc be defined as the sum µc = µl + µs,
and νc = νl + νs. Then the combined solid, liquid, elastic potential can be written as

ψ4c =
µs
2ρ0
(IB − 3) + 3

2

µl
ρ0
III

1/3
B +

µc(1− 2νc)
2ρ0νc

(
III

−νc/(1−2νc)
B − 1

)
.(3.32)

Note that other functional forms for the strain energy density could have been
chosen for ψ4c, but we chose the Blatz–Ko form since it has a simple reduction to
compressible linear elasticity in the limit of small strain, which is deemed convenient
for our purposes. We anticipate that as the solid become significantly nonlinearly
elastic, we expect that a phase transformation will occur so that the specific choice
of Blatz–Ko is not a sensitive one for the properties of the model. The deformational
portion of stress associated with this strain energy is ψ4c,

σdef ≡ 2ρ∂ψ4c

∂B
B = µs

ρ

ρo
B − µc ρ

ρo
III

−νs/(1−2νs)
B I + µl

ρ

ρo
III

1/3
B I .(3.33)

3.2. Total free-energy density and summary of constitutive forms. The
form of ψ = ψ1 + ψ2 + ψ3 + ψ4a + ψ4b + ψ4c is written as

ψ =
µs(φ)

2ρ0
(IB − 3) + µc(φ)(1− 2νs)

2ρ0νs

(
III

−νs/(1−2νs)
B − 1

)
+
3µl(φ)

2ρo
III

1/3
B

− αc(φ)K

2ρ0
(T − T0) ln(IIIB)− 1

2
Rg(φ)T ln(IIIB) strain energy density

− cv(φ)
[
T ln

(
T

T0

)
− (T − T0)

]
thermal energy density

+
1

2
ΨwellF(φ) + βm(φ)

(
T

Tm
− 1
)
Qm + βv(φ)

(
T

Tv
− 1
)
Qv

phase transition
energy density

+
1

2
γφ|∇φ|2 . gradient energy density

(3.34)

The constitutive theory is essentially complete. The stress is given by the general
expression

σ = ρ
∂ψ

∂B
B − ∇φ⊗ξ + σdiss,(3.35)

with ξ given by ξ = ργφ∇φ and σdiss given by σdiss = µf (∇ · v)I + 2µfD. The
stress formula becomes

σ = µs
ρ

ρ0
B − µc ρ

ρ0
III

−(νs/1−2νs)
B I + µl

ρ

ρo
III

1/3
B I

− αc(φ)K
ρ

ρ0
(T − T0)I − ρRg(φ)TI

− ργφ∇φ⊗ ∇φ+ νf (∇ · v)I + 2µfD .(3.36)
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The energy flux vector remains q = −k∇T . The various source terms in the energy
and phase equations can be computed from the forms given in (3.34).
We can now summarize the governing equations for the phase change model as

ρ̇ + ρ∇ · v = 0 ,(3.37)

ρ v̇ = ∇ · σ + ρf ,(3.38)

ρcvṪ = ∇ · (k∇T ) + σdiss : ∇v +Bφ̇2 + ρT
∂2ψ

∂T∂F
F T : ∇v

+ ρT
∂2ψ

∂T∂φ
φ̇+ ρT

∂2ψ

∂T∂∇φ · ˙∇φ+ ρr ,(3.39)

Bφ̇ = ∇ · (ργφ∇φ)− ρ∂ψ
∂φ
,(3.40)

Ḟ = LF ,(3.41)

where B, cv, γφ, k, etc. are constitutive scalars which could be regarded as functions
of both φ and T . We have added the kinematic identity (3.41) in order to compute
the evolution of the displacement gradients.

4. The combined model: Modifications to include chemical reaction.
Here we list the modifications required to combine both models into one. First we
take the phase change model as the starting point and we retain all the assumptions
and assumed forms of the previous section, specifically in regards to the appearance
of φ. The configurational force balance (3.2) is retained as a fundamental balance
law (the consequence of which leads to the derivation of the evolution equation for φ,
equation (3.40)).
Next we assume that, in addition to φ, which measures the molecular order of

the phase, the mass fraction λ simultaneously measures the amount of exothermic
chemical reaction that has taken place. So λ is added to all the argument lists; in
particular, in the expression for ψ we assume the dependence

ψ = ψ(F , T, φ, λ, ∇φ,L) .(4.1)

A statement of conservation of λ is added in the form of (2.4), which reflects a molec-
ularly based conservation of species. The second law must be modified to include the
entropy flux associated with the heat of combustion (so it takes the same form as
(2.5)),

ρ η̇ ≥ −∇ ·
( q
T

)
+ ∇ ·

(
Qhcs

T

)
+
ρr

T
.(4.2)

One argues the entropy inequality in exactly the same manner as in the previous
section, with the same assumptions and conclusions of section 3, with the additional
exception that one uses the evolution equation for λ, (2.4), to reduce the dissipation
inequality in the manner explained in section 2. The energy flux vector is identified
by the requirement of positivity of the left-hand side of (2.15), which leads to

q = −k∇T +Qhcs .(4.3)

The vector s can be chosen according to Fick’s law such that

s = d ∇λ .(4.4)
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The Helmholtz free energy is designated as ψ = ψ1+ψ2+ψ3+ψ4a+ψ4b+ψ4c+ψ5, where
ψ1−4c are defined in the previous section and ψ5 is the chemical enthalpy ψ5 = −Qhcλ.

The configurational stress is again of the form ξ = ργφ∇φ. The representation of the
stress is

σ = µs
ρ

ρ0
B − µc ρ

ρ0
III

−(νs/(1−2νs)
B I + µl

ρ

ρo
III

1/3
B I

− αc(φ)K
ρ

ρ0
(T − T0)I − ρRg(φ)TI

− ργφ∇φ⊗ ∇φ+ νf (∇ · v)I + 2µfD .(4.5)

The various scalar material properties identified previously, such as cv, γφ, . . . , now
can also have explicit dependence on λ as well as φ and T .
A revised list of the governing equations for the combined model with reaction

and phase change is

ρ̇ + ρ∇ · v = 0 ,(4.6)

ρ v̇ = ∇ · σ + ρf ,(4.7)

ρcvṪ = ∇ · (k∇T ) + σdiss : ∇v +Bφ̇2 + ρT
∂2ψ

∂T∂F
F T : ∇v

+ ρT
∂2ψ

∂T∂φ
φ̇+ ρT

∂2ψ

∂T∂∇φ · ˙∇φ+ ρQhcΩ+ ρr ,(4.8)

Bφ̇ = ∇ · (ργφ∇φ)− ρ∂ψ
∂φ
,(4.9)

ρλ̇ = ∇ · (d∇λ) + ρΩ ,(4.10)

Ḟ = LF .(4.11)

With the specific constitutive forms chosen for ψ, the energy equation becomes

(4.12)

ρcvṪ = ∇·(k∇T )+νf (∇·v)2+2µfD :D+Bφ̇2−αc(φ)K
ρ

ρ0
T (∇·v)−ρRg(φ)T (∇·v)

+

{
−α

′
c(φ)

2
K
ρ

ρ0
T ln(IIIB)− ρ

R′
g(φ)

2
T ln(IIIB)− ρc′v(φ)T ln

(
T

T0

)

+ ρ

[
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

]}
φ̇+ ρQhcΩ+ ρr,

and the evolution law for φ becomes

(4.13) Bφ̇ = ∇ ·
(
ργφ∇φ

)
+ ρc′v(φ)

[
T ln

(
T

T0

)
− (T − T0)

]

− µ′s(φ)
2

ρ

ρ0
(IB − 3)− µ′c(φ)

2

ρ

ρ0

(1− 2νs)
νs

(
III

−νs/(1−2νs)
B − 1

)
+
3µ′l(φ)
2

ρ

ρo
III

1/3
B

+
α′
c(φ)

2
K
ρ

ρ0
(T − T0) ln(IIIB) +

1

2
ρR′

g(φ)T ln(IIIB)

− ρ1
2
Ψwell ∂F

∂φ
− ρ

[
β′m(φ)

(
T

Tm
− 1
)
Qm + β

′
v(φ)

(
T

Tv
− 1
)
Qv

]
.
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4.1. Material transition functions. An important ingredient of our model is
the use of φ-dependent material properties or material transition functions. Earlier
in section 2.4.2, we encountered βm(φ), βv(φ) in the specification of the phase transi-
tion energy density, µc(φ), µl(φ), µs(φ), αc(φ), Rg(φ) in the specification of the strain
energy density, cv(φ) in the specification of the thermal energy density, as well as func-
tions associated with dissipative processes like νf (φ). The model assumes that these
functions have limiting pure phase values when φ = 0, 1, 2. The structure of these
functions has an influence on the exact details of the spatial structure of the transition
layers and their dynamics when particular problems are solved. However, one makes
an implicit assumption that when the transitions occur in thin layers relative to other
geometric lengths, the structure within the layer does not strongly influence the in-
formation transmitted across the layer. This modeling precept is consistent with the
use of viscous dissipation to describe continuum shock structure when the shock is
molecularly thin.
For illustration sake, Figures 2 and 3 show typical transition functions that we

have used to carry out representative simulations discussed in the companion paper
[13]. These functions are constructed from simple polynomials in φ and their smooth
extensions. The figures clearly show the basic properties that are required. For
example, in Figure 2(c), the representation of the thermal expansion parameter αc(φ),
which has the same (constant) value in the solid and liquid phase, is zero in the gas
phase. Another example is that β′m(φ) is zero for all values of φ except for those
between 0 and 1, and terms that multiply β′m(φ) are only involved in the solid to liquid
transitions of melting or freezing and are totally absent in the liquid-gas transition of
evaporation and condensation.

5. Some limiting cases.

5.1. Pure phases. The results for pure phases can be identified by the con-
stitutive forms for the stress tensor. First we will consider the solid, φ = 0, in the
additional limit of small strain. The small strain limit is represented in terms of
the displacement gradient H = F − I, where |H| << 1. Define the small strain
tensor E = (H + HT )/2, and the left Cauchy–Green tensor can be written as
B = FF T = I + 2E + HHT . Our limiting form for the stress relation reduces
to

σ = −αsolid
ρ

ρ0
K(T − T0)I +

2µsolid νsolid
1− 2 νsolid IE I + 2µsolid E ,(5.1)

When one considers the limit of a liquid, φ = 1, the expression for the stress becomes

(5.2)

σ = −αliquidK
ρ

ρ0
(T−T0) I−µliquid ρ

ρ0

((
ρ

ρ0

)2 νliquid/(1−2 νliquid)

−
(
ρ

ρ0

)−2/3
)
I

+ νliquid(∇ · v)I + 2µliquidD;

similarly for the limit of the gas, φ = 2, the expression for the stress becomes

σ = −ρRgasTI + νgas(∇ · v)I + 2µgasD .(5.3)

5.2. Motionless phase transition. In this case we simply assume that the
system is nearly motionless with v ≈ 0 and consider the pure phase change from solid
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Fig. 2. Plots of transition functions for HMX simulation and their derivatives with re-
spect to the phase variable. Shear modulus, ideal gas constant, thermal expansion coefficient,
and phase diffusion coefficient are shown from top to bottom.

to liquid with no chemical reaction. In addition, we neglect the thermal expansion
configurational forces, consistent with a nearly zero velocity field, and the thermal
dissipation associated with the phase transition. Further we assume that φ is in the
range 0 ≤ φ ≤ 1 and F(φ) is effectively a double-well potential. We take the specific
heat to be constant and are left with a thermal-diffusional model for the temperature
and phase field given by the equations

ρcvṪ = ∇ · (k∇T ) + ρβ′m(φ)
T

Tm
Qmφ̇(5.4)

and

Bφ̇ = ∇ · (ργφ∇φ)− ρ1
2
Ψwell ∂F

∂φ
− ρβ′m(φ)

(
T

Tm
− 1
)
Qm.(5.5)

These equations are a generalized form of a thermally dependent Ginzburg–
Landau theory of phase transitions often cited in discussions of solidification of binary
alloys (see, for example, Wheeler, Boettinger, and McFadden [14].) Simple systems
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Fig. 3. ϕ-dependent transfer functions (derivatives) for heat of phase transformations,
β′
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v. The third figure depicts the triple-well Ginzburg–Landau potential function and
its derivative.

of this form, with a double-well potential and a single latent heat term, that have
been analyzed in the literature have been shown to correspond to various forms of the
classical (sharp interface) description of phase transitions. Further analysis leads to
modified Stefan problems that incorporate surface tension and kinetic undercooling
[8].

5.3. Relation to the simpler theory of quasi-static phase transforma-
tion. Here we briefly discuss the manner in which our model relates to the theory
of quasi-static phase transformations that are a part of classical equilibrium ther-
modynamics. We assume that the changes in the state in the material happen so
slowly that all inertial effects can be neglected and that the material undergoes only
isotropic volume changes that are measured by changes in the density. The stress is
spherical so that σ = −pI. The deformation is homogeneous such that x = sX, with
F = sI, det(F ) = s = (ρ0/ρ), B = (ρ0/ρ)

2I, and strain invariants IIIB = (ρ0/ρ)
2

and IB − 3 = 3[(ρ0/ρ)2 − 1]. One neglects all spatial gradients.
Next we consider the volume changes that occur as the temperature rises when

the material is subjected to constant volumetric heating (given by constant r), un-
der isobaric (constant pressure) conditions. For simplicity, we will also assume that
the specific heat is constant in all phases. Then the change in the thermodynamic
states would be controlled by a simplified version of the energy equation (for the
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temperature) and the phase evolution equation. These are written as

ρcv
∂T

∂t
= ρ

(
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

)
∂φ

∂t
+ ρr ,(5.6)

B
∂φ

∂t
= −ρ1

2
Ψwell ∂F

∂φ
− ρ

[
β′m(φ)

T − Tm
Tm

Qm + β
′
v(φ)

T − Tv
Tv

Qv

]
,(5.7)

and for the purpose of illustration, (4.5) is simplified by linearizing ρ about ρ0 in the
solid and liquid phases to obtain the thermal equation of state, a relation between p,
ρ, T, and φ,

p =
6µc(φ)νs
1− 2νs

(
ρ

ρ0
− 1
)
+ αcK

ρ

ρ0
(T − T0)− ρRgT.(5.8)

The above equations are solved subject to the initial condition that the material is
initially solid and, at the reference temperature, φ(0) = 0 and T (0) = T0. For constant
pressure, a specified temperature, and φ, (5.8) determines the specific volume, V =
1/ρ. The solution of the initial value problem for T and φ determines a trajectory in
T, V, φ-space at fixed p. A typical solution shows that as the temperature rises in the
solid, the volume increases along the isobar. A phase transition (change in φ) does
not take place till the temperature nears the melting temperature, Tm. Above that
temperature local analysis shows that a change in stability of the state φ = 0 occurs
and then the transition from φ = 0 to φ = 1 occurs. Since the volumetric change is
small (4% or less), the deviation in a T, v isobar is not large in some sense. As the
temperature continues to rise, the second phase transition occurs near the vaporization
temperature, Tv. Since the thermal equation of state is effectively modeled by the
ideal gas law, a rather large change in the specific volume occurs. Finally, after the
phase transition to vapor is completed and φ = 2 is reached, the temperature continues
to climb on the gas phase isobar with increasing volume. Figure 4 show plots of a
T, V -trajectory for a isobaric phase transition for the HMX-like material described in
[13]. Figure 5 shows the corresponding φ, V -trajectory at different pressures. Again,
the purpose here is simply to illustrate that conventional notions of quasi-static phase
transformations described in classical thermodynamics are embedded in this model.

6. Special forms of the model for three simple motions. In this concluding
section we write out special and exact forms of the differential equations for the model
when the material undergoes three simple motions: (i) evolution at constant volume,
(ii) one-dimensional, time-dependent, longitudinal motion, and (iii) one-dimensional,
time-dependent shear motion. All three are very important in the analysis of ignition
of EMs. The three cases are the exclusive subject of the companion paper [13], in
which numerical simulation and the properties of the model are discussed further.

6.1. Constant volume evolution and thermal explosion. A simple but ex-
tremely important subcase that is studied extensively in combustion theory describes
the constant volume thermal explosion, where the velocity v and all spatial gradients
are exactly zero. The density is constant hence the volume of a material particle is
constant. For illustration, we neglect thermal expansion and assume constant specific
heat and gas constants. We are left with three ODEs in time for the temperature,
phase change, and reaction progress:

ρcv
∂T

∂t
= ρ

(
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

)
∂φ

∂t
+ ρQhcΩ+ ρr ,(6.1)
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B
∂φ

∂t
= −ρ1

2
Ψwell ∂F

∂φ
− ρ

[
β′m(φ)

T − Tm
Tm

Qm + β
′
v(φ)

T − Tv
Tv

Qv

]
,(6.2)

∂λ

∂t
= Ω.(6.3)

If one discards phase change, we recover the equations from standard combustion
theory for constant volume thermal explosion, cv(∂T/∂t) = QhcΩ , (∂λ/∂t) = Ω. Of
course, the more interesting behavior occurs when phase change is included. The
typical dynamics of these ODEs are discussed at length in [13].

6.2. Longitudinal motion. Next we turn to specializations of the equations to
simplified motions that lead to PDEs in one space dimension and one time dimension;
this is particularly suited to the study of ignition phenomena in EMs (which is one
of our main concerns). First we consider longitudinal compression associated with a
flyer-plate impact test. In this idealization, an infinite slab experiences a displacement
loading normal to its surface. Specifically we consider the following one-dimensional
motion:

x1 = X1 + f1(X1, t), x2 = X2, x3 = X3 ,(6.4)

where f1 is the 1-displacement.
For this motion, there is one nonzero velocity component, v1 = ∂f1/∂t|X(X1, t),

F is diagonal with F11 = ∂x1/∂X1 = 1 + f
′
1, and F22 = F33 = 1. The density

is related to the single strain gradient by 1 + f ′1 = ρ0/ρ. Also, B is diagonal with
B11 = (1 + f

′
1)

2, B22 = 1, B33 = 1. The first and third invariants of B are IB =
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Fig. 5. Phase-V trajectory of constant pressure under the thermo-quasistatic assumption.

2 + (1 + f ′1)
2 and IIIB = (1 + f

′
1)

2, with IIIB = (ρ0/ρ)
2 and IB − 3 = (ρ0/ρ)2 − 1.

Hence we use the density as the independent strain measure and replace f ′1. The one
nonzero component of the velocity gradient and rate of strain tensor are, respectively,
L11 = D11 = ∂v1/∂x1. Also, (∇φ⊗ ∇φ)11 = (∂φ/∂x1)

2. It then follows that all the
shear stresses are zero, σ12 = σ23 = σ13 = 0, and the normal stresses σ11 are given by

(6.5) σ11 = −µc
(
ρ

ρ0

)[(
ρ

ρ0

) 2νs
1−2νs −

(
ρ

ρ0

)−2
]
− αcK

ρ

ρ0
(T − T0)

− ρRgT − ργφ
(
∂φ

∂x1

)2

+ (νf + 2µf )
∂v1
∂x1

.

The other normal stress are the same as the σ11 stress, minus the phase stress, i.e.,
σ22 = σ33 = σ11 + ργφ(∂φ/∂x1)

2.

The specific governing equations for longitudinal compression are the mass and
momemtum equations

∂ρ

∂t
+ v1

∂ρ

∂x1
+ ρ

∂v1
∂x1

= 0 ,(6.6)

(6.7) ρ

(
∂v1
∂t
+ v1

∂v1
∂x1

)
=

∂

∂x1

{
−µc

(
ρ

ρ0

)[(
ρ

ρ0

) 2νs
1−2νs −

(
ρ

ρ0

)−2
]

− αcK
ρ

ρ0
(T − T0)− ρRgT − ργφ

(
∂φ

∂x1

)2

+ (νf + 2µf )
∂v1
∂x1

}
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and the energy balance, phase evolution, and reaction progress evolution equations
that take the specific forms

ρcv

(
∂T

∂t
+ v1

∂T

∂x1

)
=

∂

∂x1

(
k
∂T

∂x1

)
+ (νf + 2µf )

(
∂v1
∂x1

)2

+ Bφ̇2 −
[
αcK

ρ

ρ0
T + ρRg(φ)T

]
∂v1
∂x1

+

{
−1
2
α′
c(φ)K

ρ

ρ0
T ln(IIIB)− 1

2
ρR′

g(φ)T ln(IIIB)− ρc′v(φ)T ln(T/T0)

+ ρ

[
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

]}
φ̇+ ρQhcΩ+ ρr,(6.8)

(6.9) B

(
∂φ

∂t
+ v1

∂φ

∂x1

)
=

∂

∂x1

(
ργφ

∂φ

∂x1

)
+ ρc′v(φ)

[
T ln

(
T

T0

)
− (T − T0)

]

− µ′s(φ)
2

ρ

ρ0
(IB − 3)− µ′c(φ)

2

ρ

ρ0

(1− 2νs)
νs

(
III

−νs/(1−2νs)
B − 1

)
− 3µ

′
l(φ)

2

ρ

ρo
III

1/3
B

+
α′
c(φ)

2
K
ρ

ρ0
(T − T0) ln(IIIB) +

1

2
ρR′

g(φ)T ln(IIIB)

− 1
2
ρΨwell ∂F

∂φ
− ρ

[
β′m(φ)

T − Tm
Tm

Qm + β
′
v(φ)

T − Tv
Tv

Qv

]
,

and

ρ

(
∂λ

∂t
+ v1

∂λ

∂x1

)
=

∂

∂x1

(
d
∂λ

∂x1

)
+ ρΩ .(6.10)

6.3. Shear motion. Now we turn to specialization of the equations to shear
motion, which again leads to PDEs in one space dimension, transverse to the motion,
and one time dimension. A nominal geometry is a slab of fixed thickness loaded on
one surface with constant velocity while the other is fixed. The bottom surface is
taken to be fixed (zero displacement) for the entire duration of the test. Specifically,
we consider the following one-dimensional motion:

x1 = X1 + f1(X2, t), x2 = X2 + f2(X2, t), x3 = X3 ,(6.11)

where f1 and f2 are the in-plane displacements, which can also be regarded as func-
tions of the spatial coordinate and time x2, t. Corresponding to this motion, one has
the velocities with dependencies v1(x2, t), v2(x2, t), and v3 = 0 and ∂/∂x1 = ∂/∂x3 =

0. The expression of the material time derivative is given by
˙
() = ∂/∂t+ v2 ∂/∂x2.

The shear deformation is described by

(F )ij =
∂xi
∂Xj

=


1 f ′1 0
0 1 + f ′2 0
0 0 1



ij

,(6.12)

(B)ij = (FF T )ij =


 1 + f ′12

f ′1(1 + f
′
2) 0

f ′1(1 + f
′
2) (1 + f ′2)

2 0
0 0 1



ij

,
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(L)ij = (∇v)ij =
∂vi
∂xj

=


0 ∂v1

∂x2
0

0 ∂v2

∂x2
0

0 0 0


 , (D)ij =


 0 1

2
∂v1

∂x2
0

1
2
∂v1

∂x2

∂v2

∂x2
0

0 0 0



ij

.(6.13)

The invariants ofB are computed as IB = 1+f
′
1
2
+(1+f ′2)

2+1 and IIIB = (1+f
′
2)

2 =

(ρ0/ρ)
2 with 1 + f ′2 = ρ0/ρ. Also IB − 3 = (ρ0/ρ)2 − 1 + f ′12

. In addition, from the

kinematic identity, Ḟ = LF , we obtain two nontrivial relations ḟ ′1 = (1+ f
′
2)∂v1/∂x2

and ḟ ′2 = (1+f
′
2)∂v2/∂x2, where the material derivative is

˙
() = ∂/∂t+v2 ∂/∂x2. The

second of the two results just restates mass conservation and is equivalent to replacing
1+f ′2 with ρ0/ρ. But the first is an independent expression for the shear strain, which
can be recast in terms of the density and transverse velocity gradient as

˙
(f ′1) =

(
ρ0
ρ

)
∂v1
∂x2

.(6.14)

Finally, the contribution to the configurational stress has only one nonzero component,
(∇φ⊗∇φ)22 = (∂φ/∂x2)

2.

Using the density ρ and the shear strain f ′1 as the two independent kinematic
variables, we can now write down expressions for the components of the stress tensor.
The cross-plane shear stresses are zero, i.e., σ13 = σ23 = 0. The in-plane shear stress
σ12 is given by the expression

σ12 = µs f
′
1 + µf

∂v1
∂x2

.(6.15)

The in-plane normal stress σ22 is given by

(6.16) σ22 = −µc
(
ρ

ρ0

)[(
ρ

ρ0

) 2νs
1−2νs −

(
ρ

ρ0

)−2
]
− αcK

ρ

ρ0
(T − T0)− ρRgT

− ργφ
(
∂φ

∂x2

)2

+ (νf + 2µf )
∂v2
∂x2

.

The specific governing equations for the shear motion for the full model are

∂ρ

∂t
+ v2

∂ρ

∂x2
+ ρ

∂v2
∂x2

= 0 ,(6.17)

ρ

(
∂v1
∂t
+ v2

∂v1
∂x2

)
=

∂

∂x2

[
µsf

′
1 + µf

∂v1
∂x2

]
,(6.18)

(6.19) ρ

(
∂v2
∂t
+ v2

∂v2
∂x2

)
=

∂

∂x2

{
−µc

(
ρ

ρ0

)[(
ρ

ρ0

) 2νs
1−2νs −

(
ρ

ρ0

)−2
]

− αc(φ)K
ρ

ρ0
(T − T0)− ρRg(φ)T − ργφ

(
∂φ

∂x2

)2

+ (νf + 2µf )
∂v2
∂x2

}
,
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(6.20) ρcv

(
∂T

∂t
+ v2

∂T

∂x2

)
=

∂

∂x2

(
k
∂T

∂x2

)
+

[
µf

(
∂v1
∂x2

)2

+ (νf + 2µf )

(
∂v2
∂x2

)2
]

+Bφ̇2 −
[
αcK

ρ

ρ0
T + ρRgT

]
∂v2
∂x2

+

{
−1
2
α′
c(φ)K

ρ

ρ0
T ln(IIIB)− 1

2
ρR′

g(φ)T ln(IIIB)− ρc′v(φ)T ln(T/T0)

+ ρ

[
β′m(φ)

T

Tm
Qm + β

′
v(φ)

T

Tv
Qv

]}
φ̇+ ρQhcΩ+ ρr ,

(6.21) B

(
∂φ

∂t
+ v2

∂φ

∂x2

)
=

∂

∂x2

(
ργφ

∂φ

∂x2

)
+ ρc′v(φ) [T ln(T/T0)− (T − T0)]

− µ′s(φ)
2

ρ

ρ0
(IB − 3)− µ′c(φ)

2

ρ

ρ0

(1− 2νs)
νs

(
III

−νs/(1−2νs)
B − 1

)
− 3µ

′
l(φ)

2

ρ

ρo
III

1/3
B

+
α′
c(φ)

2
K
ρ

ρ0
(T − T0) ln(IIIB) +

1

2
ρR′

g(φ)T ln(IIIB)

− 1
2
ρΨwell ∂F

∂φ
− ρ

[
β′m(φ)

T − Tm
Tm

Qm + β
′
v(φ)

T − Tv
Tv

Qv

]

and for chemical reaction are

ρ

(
∂λ

∂t
+ v2

∂λ

∂x2

)
=

∂

∂x2

(
d
∂λ

∂x2

)
+ ρΩ .(6.22)

Finally, the kinematic relation (6.14) for the shear strain (which must be included) is
expressed as

ρ

ρ0

(
∂f ′1
∂t
+ v2

∂f ′1
∂x2

)
=
∂v1
∂x2

.(6.23)

7. Conclusions. We have posed a three-dimensional model for a representative
energetic material with two independent state variables that represent the change in
phase and the extent of exothermic reaction. The model has a context and formulation
in which it is thermodynamically consistent. This is in contrast to other models which
may not be self-consistent because the constitutive theory is invoked a posteriori.
Gurtin’s notion of a fundamental balance of configurational forces leads to evolution
laws for the phase variable. Limiting forms of this model are consistent with classical
theories, but the model also yields limiting forms that can describe the transition
between two phases, if desired. The combined model is very rich in the sense that the
coupling between phase evolution and the energy equations is complex, due in part
to the necessary partition of the Helmholtz free energy.

In [13] we use experimental data based on the behavior and properties of HMX
to study representative dynamics of the three simple motions discussed in section 6.
The examples we develop show a variety of behavior observed over many time and
length scales. Strain localization and phase transition phenomena are observed, as
well as many other complex phenomena.
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